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Abstract Sequence variation of the mitochondrial control region was studied in the Mediterranean rainbow wrasse 17 

(Coris julis), a species with pronounced pelagic larval phase inhabiting the Mediterranean Sea and the adjacent 18 

coastal eastern Atlantic Ocean. A total of 309 specimens from 19 sampling sites was analysed with the aim of 19 

elucidating patterns of molecular variation between the Atlantic and the Mediterranean as well as within the 20 

Mediteranean Sea. Phylogeographic analyses revealed a pronounced structuring into a Mediterranean and an 21 

Atlantic group. Samples from a site at the Moroccan Mediterranean coast in the Alboran Sea showed intermediate 22 

frequencies of “Mediterranean” and “Atlantic” haplotypes. We recognized a departure from molecular neutrality 23 

and a star-like genealogy for samples from the Mediterranean Sea, which we propose to have happened due to a 24 

recent demographic expansion. The results are discussed in the light of previous studies on molecular variation in 25 

fish species between the Atlantic and the Mediterranean and within the Mediterranean.  26 

27 
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Introduction 28 

Molecular variation among marine fish populations has been described in diverse patterns 29 

ranging from a panmictic model to a genetic structuring with separate local populations. 30 

Genetic variation in marine fish has been traditionally considered smaller than variation in 31 

freshwater and anadromous species due to the presumed lack or paucity of barriers to gene 32 

flow. Many early studies (Ward et al. 1994) reported results much more consistent with a 33 

panmictic model. However, phenomena such as larval retention due to currents (Stepien et al. 34 

2001; Palumbi 2003) or larval behaviour (Palumbi 1994) can lead, even in species with a 35 

pronounced planktonic larval phase, to a significant genetic divergence of populations. For 36 

example, Gerlach et al. (2007) showed that some planktonic larvae are capable of 37 

distinguishing “olfactory signatures” of their natal reefs, thus opening the possibility for 38 

homing behaviour and the formation of retention zones. In some cases, distinct geographical 39 

lineages have been detected for species with high dispersal capacity even in complete absence 40 

of apparent oceanographic barriers to gene flow (Burford 2009; Bergek and Bjorklund 2009). 41 

Furthermore, species with similar ecological traits do not always show consistent 42 

phylogeographic patterns: Bargelloni et al. (2003) studied five sparid species sharing similar 43 

biological features and found a strong phylogeographic break between the Atlantic Ocean and 44 

the Mediterranean Sea in three species, but no evidence of such a break in others. 45 

This Mediterranean-Atlantic transition has been the subject of a variety of studies on both 46 

vertebrates and invertebrates (reviewed by Patarnello et al. 2007). No general relationship 47 

between either dispersal ability or life history traits, and patterns of partial or complete genetic 48 

isolation between Atlantic and Mediterranean populations could be found (Patarnello et al. 49 

2007). The authors also noticed that some of the species which exhibit Atlantic-Mediterranean 50 

differentiation show steep changes of allele frequencies associated with the Almeria-Oran front 51 
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(which separates the Alboran Sea from the rest of Mediterranean) rather than with the Strait of 52 

Gibraltar (which separates the Mediterranean Sea from the Atlantic Ocean). 53 

Within the Mediterranean, a pronounced genetic structuring in fishes was detected in 54 

comparisons between populations from the Adriatic Sea and the remaining Mediterranean. For 55 

example, a divergence of the Adriatic population from other Mediterranean populations has 56 

been noticed in the sand goby (Pomatoschistus minutus; Gysels et al. 2004), in the red mullet 57 

(Mullus barbatus; Maggio et al. 2009) and in European sprat (Sprattus sprattus; Debes et al. 58 

2008). In the latter study (Debes et al. 2008), individuals from the Adriatic and the Tyrrhenian 59 

Sea were highly differentiated at mitochondrial DNA which was explained as the result of 60 

postglacial warming and the subsequent inability of this boreal, cold adapted species to 61 

maintain gene flow at its southernmost distribution limit under present physical oceanographic 62 

conditions. 63 

Previous studies on Thalassoma pavo, a wrasse species of tropical origin, found no evidence of 64 

geographic structure between the Atlantic and the Mediterranean Sea, instead, it was suggested 65 

that there could be a phylogeographic break in the Aegean area between the eastern and the 66 

western Mediterranean (Costagliola et al. 2004; Domingues et al. 2008). A divergence between 67 

eastern and western Mediterranean populations has also been noticed both in other fish species 68 

(Thunnus thynnus thynnus; Carlsson et al. 2004; Pomatoschistus marmoratus; Mejri et al. in 69 

press) and other marine organisms (Cerastoderma glaucum; Nikula and Väinölä 2003; 70 

Posidonia oceanica; Arnaud-Haond et al. 2007; Serra et al. 2010; Patella rustica; Sà-Pinto et 71 

al. 2010). However, a study on two species of the genus Scomber highlighted a divergence 72 

between eastern and western Mediterranean populations for one of them, but no evidence of 73 

such a divergence in the other species (Zardoya et al. 2004). 74 

The Mediterranean rainbow wrasse (Coris julis, L. 1758) is a small-sized labrid fish that is 75 

widely spread in the Mediterranean Sea and along the adjacent European and African Atlantic 76 

coasts. This species is a diandric protogynous hermaphrodite that exhibits two radically 77 
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different colour patterns (liveries). The primary livery is exhibited by juveniles, females, and 78 

non-territorial males whereas the secondary livery is exhibited by territorial males only (Bacci 79 

and Razzauti 1957; Roede 1966; Lejeune 1982; Bentivegna and Cirino 1984). Among the 80 

secondary livery, two different geographic colorations can be found with the Atlantic 81 

specimens being different from the specimens typically observed in the Mediterranean (Laurent 82 

and Lejeune 1988).  83 

After larval settlement the rainbow wrasse inhabits shallow coastal waters (mainly rocky areas) 84 

and shows little migratory ability. Contrasting the rather stationary adult phase, pelagic eggs 85 

and a pronounced planktonic larval phase (Gordoa et al. 2000; Raventòs and Macpherson 2001) 86 

suggest a potentially high dispersal capacity. Intraspecific molecular variation in C. julis has 87 

previously been studied by Guillemaud et al. (2000) based on mitochondrial 12S rDNA and by 88 

Aurelle et al. (2003) based on microsatellite markers. The study by Guillemaud and colleagues 89 

(2000), although based on an extremely low sample size (only seven C. julis specimens), 90 

showed a divergence between sequences of specimens of Atlantic and Mediterranean origin. 91 

The study by Aurelle et al. (2003) revealed the Atlantic-Mediterranean transition as a 92 

phylogeographic break but no further genetic differentiation on each side of the Strait of 93 

Gibraltar, even between geographically distantly separated sites like continental Portugal and 94 

the offshore situated Azores Islands. The authors hypothesized that genetic differentiation 95 

within the Mediterranean Sea might be more pronounced than detected, as they acknowledged 96 

a limited power of their study due to a low sample size and therefore considered their results on 97 

the Mediterranean Sea as preliminary (Aurelle et al. 2003).  98 

The present study aims at contributing to clarify the role of the Atlantic-Mediterrranean 99 

transition (Strait of Gibraltar versus Almerian-Oran front) as a phylogeographic barrier by 100 

testing its relevance for a small demersal wrasse species and additionally testing for a genetic 101 

structuring of the rainbow wrasse within the Mediterranean Sea. 102 

 103 
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Materials and methods 104 

A total of 309 specimens of Coris julis from 19 Mediterranean and Atlantic sampling sites (Fig 105 

1, Table 1), sampled with fish traps, nets, fishing rods and hand lines, was analysed. Individual 106 

white muscle tissue samples were collected from the right side of each fish and preserved in 107 

95% ethanol. 108 

Total DNA was extracted using a commercial silica-based spin column kit (GenElute 109 

Mammalian Genomic DNA Miniprep Kit, Sigma Aldrich). We amplified a mitochondrial DNA 110 

fragment of about 490 bp (base pairs) including part of the tRNA threonine gene, the tRNA 111 

proline gene and the 5' portion of the control region via PCR. For the PCR we used modified 112 

universal primers THR2m1 (5’-AGAGCGCCGGTCTTGTAAAC-3’) and TDKDm2 (5’-113 

CTGAAGTAGGAACCAAATGCCAGGAA-3’) derived, respectively, from L15926 (Kocher 114 

et al 1989) and TDKD (Slade et al 1994). PCR amplification reactions were obtained for a total 115 

volume of 50 l in1X buffer,  1 mM MgCl2, 0.2 mof each dNTP, 0.2 M of each primer, 116 

1.25 units of Taq DNA polymerase (Invitrogen) and 2 l of extracted DNA. The PCR cycling 117 

profile comprised an initial denaturation step of 4 minutes at 95°C, 30 cycles of denaturation 118 

(94°C for 30 seconds), annealing (56°C for 1 minute) and extension (72°C for 1 minute), and a 119 

final extension step of 72°C for 10 minutes; the ramp was 2°C/s for all the steps. Obtained 120 

amplified fragments were sequenced using an external sequencing service (Secugen S.L., 121 

Madrid, Spain). Only the control region portion (334 bp) was used in sequence analyses. 122 

Sequences were visually aligned with the program Bioedit 7.0 (Hall 1999) and sequence data 123 

was deposited in GenBank (accession numbers HQ917534-HQ917613). 124 

The best nucleotide substitution model was estimated with ModelTest (Posada 2008) using AIC 125 

(An Information Criterion; Akaike 1974) as information criterion. The selected model, TrN+I 126 

(Tamura and Nei 1993) was then used to correct genetic distances whenever possible. 127 
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Analysis of genetic structure 128 

To investigate the population genetic structure in rainbow wrasse, Analysis of Molecular 129 

Variance (AMOVA, Excoffier et al. 1992) and computation of Fst pairwise values between 130 

sampling sites (with the exclusion of the samples from Israel and Crete whose sample size was 131 

deemed too small) were performed with the software Arlequin 3.1 (Excoffier et al. 2005). The 132 

AMOVA was performed on the Tamura and Nei (1993) distance matrix using various 133 

geographical groupings of the sampling sites (see caption of Table 2 for a rationale) and 134 

assessing significance with the permutational procedure implemented in the software (1000 135 

permutations). The R script provided by Fitzpatrick (2009) was used to ensure  that it was 136 

possible to obtain a P-level smaller than 0.05 with the selected groupings. 137 

Nonmetric multidimensional scaling analysis (Kruskal 1964a,b) was also performed, using  the 138 

software NTSYSpc 2.2 (Rohlf 2007), on the matrix of pairwise Fst between sampling sites both 139 

using all samples and using only the samples from the Mediterranean (with the exception of the 140 

Moroccan one). Ordinations of sampling sites along the first two dimension of the space 141 

obtained by multidimensional scaling were then plotted against each other. 142 

Neutrality tests 143 

Departures from neutrality of molecular evolution were tested for different geographic 144 

groupings by computing the value of Ramos-Onsins and Rozas R2  statistic (Ramos-Onsins and 145 

Rozas 2002) and testing its significance with the procedure based on coalescent simulations 146 

(1000 simulated samples) with DNAsp 5.0 (Librado and Rozas 2009). The software Arlequin 147 

was used to compute Fu’s FS (Fu 1997) values and to test their deviation from neutrality 148 

expectations by the means of the coalescent algorithm implemented in the program (10,000 149 

simulated samples). The choice of such tests has been made in the light of previous studies on 150 

the power of various neutrality tests (Fu 1997; Ramos-Onsins and Rozas 2002). In fact, we 151 

decided to use both Ramos-Onsins and Rozas R2 and Fu's FS because they have been shown to 152 
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be more powerful than a number of alternatives, albeit the sample size defines which of the two 153 

is more powerful (Ramos-Onsins and Rozas 2002). 154 

Relationships among haplotypes 155 

The relationships among haplotypes were described using two network methods: median-156 

joining (Bandelt et al. 1999) and neighbor-net (Bryant and Moulton 2004). The median-joining 157 

network was constructed using the software Network (Fluxus Technology Ltd), the neighbor-158 

net network (Bryant and Moulton 2004) based on the uncorrected p-distance was constructed 159 

using the software SplitsTree4 (Huson and Bryant 2006). Additionally, we obtained a bayesian 160 

phylogenetic tree with the software MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003) under a 161 

model that corresponds to the GTR model of substitution with a proportion of invariable sites. 162 

For this, we sampled every 1,000 generation from a total of 13,706,000 generations when the 163 

split frequency between runs, with six chains each, was <0.01. We obtained the phylogenetic 164 

tree after discarding the first 25% of generations. 165 

Spatial patterns 166 

The software NTSYSpc 2.2 (Rohlf 2007) was used to obtain plots of pairwise genetic distances 167 

(TrN-corrected distances among group means) versus pairwise geographic distances, to 168 

calculate correlations between matrices measuring genetic differences and matrices measuring 169 

geographical distances, and to test their significance by the means of a Mantel test (Mantel 170 

1967) with 1000 permutations. Geographical distances were computed both as "direct" 171 

distances and as shortest waterway distances (obtained using the software Google Earth) among 172 

sampling locations. Both geographical distances in kilometres and their logarithmic 173 

transformations were used. Plots of pairwise genetic versus pairwise geographic distances were 174 

chosen because, in case of significant correlation, they can give a hint on the underlying 175 

process (Guillot et al. 2009). 176 
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Spatial autocorrelation analysis, as implemented in the software Alleles in Space (Miller 2005) 177 

was also performed using 12 distance classes. To test if the method of choice of distance 178 

classes (equal distances and unequal sample sizes or unequal distances and equal sample sizes) 179 

or their number  had an effect on the analysis, the analysis was repeated using both methods 180 

and 5, 8, 10, 12 distance classes.  181 

The Israeli and Cretan samples were excluded from the computation of correlations and from 182 

the spatial autocorrelation analysis due to their low sample size. 183 

The software Barrier (Manni et al. 2004), which computes a Delaunay triangulation on a 184 

Voronoi tessellation and then uses Monmonier’s (1973) maximum difference algorithm in 185 

order to identify barriers, was used to identify the position of possible genetic barriers among 186 

sampling sites based on the TrN-corrected distances among sites. Two runs of the software 187 

were performed; the first one computing only one barrier, the second computing two barriers. 188 

Finally, a landscape shape interpolation of genetic distances, which interpolates observed 189 

genetic distances across the landscape and shows them graphically as heights (Z axis) in a 190 

graph where the base (values along X and Y axes) represents the geographic space, was 191 

obtained using the software Alleles in Space (Miller 2005). 192 

 193 

Results 194 

Analysis of genetic structure 195 

By using grouping schemes A (Atlantic versus Mediterranean) and B (Atlantic samples + 196 

Morocco versus the remaining Mediterranean samples) most of the molecular variation was 197 

explained by the among-groups variance component, which is statistically significant (Table 2). 198 

In particular, using scheme A, 94.9% of molecular variance was explained by the among-199 

groups term, while using scheme B this term explained 83.16% of the observed variation. On 200 

the opposite, using schemes C (Eastern Mediterranean versus Central Mediterranean versus 201 
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Western Mediterranean) and D (Eastern Mediterranean versus the remaining Mediterranean 202 

samples except the Moroccan one) resulted in most of the molecular variation being expressed 203 

by the within-population term. 204 

The pairwise comparison between sampling sites (Table 3) shows that the Portuguese sample 205 

was significantly different from all other samples except the one from the Cantabrian Sea 206 

which, in turn, showed a similar pattern. Also, the Moroccan sample is significantly different 207 

from many other samples. Nonmetric multidimensional scaling required 10 dimensions to get 208 

an almost perfect (sensu Kruskal 1964a) stress value (0.00026) when analysing only 209 

Mediterranean sites (with the exception of Morocco), while 2 dimensions were sufficient to 210 

achieve zero stress when using also Moroccan and Atlantic samples. Looking at the patterns in 211 

the first two dimensions obtained by nonmetric multidimensional scaling analyses, in the 212 

analyses with both Mediterranean and Atlantic samples (Fig 2) most of sampling sites are so 213 

close together in the two-dimensional space obtained by the analysis that only three points are 214 

distinguishable in the graph: one point for all the Mediterranean samples (except the Moroccan 215 

one), a second point for the Moroccan sample and a third point for all the Atlantic samples. On 216 

the opposite, the analysis performed only on Mediterranean samples (excluding the Moroccan 217 

one, Fig 3) show in the first two dimensions a pattern in which geographic proximity does not 218 

necessarily reflect proximity in the multivariate space. 219 

Neutrality tests 220 

Results of the analyses of Ramos-Onsins and Rozas R2 in geographic groupings of samples are 221 

provided in Table 4. Mediterranean samples showed a significant departure from neutrality. 222 

Analyses using Fu’s FS gave the same results (not shown). 223 

Relationships among haplotypes 224 

A total of 80 haplotypes was recognized (Table 5). Of those haplotypes, the most abundant is 225 

haplotype 2 which was present in 53.4% of all specimens and was shared among all sampling 226 

sites except the Israeli, Portuguese and Cantabrian Sea ones. Moreover, a high number of rare 227 
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haplotypes could be observed (60 haplotypes, 75% of the total number of haplotypes were 228 

private). 229 

The neighbour-net network is depicted in Fig 4 (the median-joining network and the Bayesian 230 

tree provided similar results and  both are not shown). It can be noticed that the "Atlantic" sub-231 

network (the smallest of the two sub-networks) comprised haplotypes 68, 69, 72 and 76. Of 232 

them, haplotype 68 was shared among the Portuguese, Moroccan and Cantabrian Sea samples, 233 

the other three haplotypes were private of Atlantic (69 and 72) or Moroccan (76) samples. 234 

Moreover, all haplotypes found in the two Atlantic samples (68, 69 and 72) grouped 235 

exclusively into the "Atlantic" sub-network. Haplotypes found in the Moroccan sample 236 

grouped both in the "Atlantic" sub-network and in the "Mediterranean" sub-network which, in 237 

turn, comprised only Mediterranean haplotypes and showed a "star-like" topology.  238 

Spatial patterns 239 

The correlation between "direct" geographic distances and genetic distances was R=0.6 using 240 

raw distances, R=0.5 using log-transformed distances and significant in both cases 241 

(respectively p=0.004 and p=0.003). The correlations between shortest waterway distances and 242 

genetic distances were R=0.7 using raw geographic distances and R=0.57 using their 243 

logarithmic transformations, and higher than expected by chance alone (P<0.001 and P=0.002, 244 

respectively). A plot of pairwise genetic distances versus pairwise geographic distances 245 

(shortest waterway, raw) is shown in Fig 5. 246 

The spatial autocorrelation analysis using 12 distance classes (unequal distances, equal sample 247 

size) was overall significant (P<0.001). When analysing each distance class, all the classes 248 

from the 990-1126 Km class to the largest class showed a significant upper tail (within-class 249 

genetic distances higher than expected by chance). Using a different method of choice or a 250 

different number of distance classes did not appreciably affect the outcome of the analysis. 251 

The barriers computed with the Monmonier algorithm and the interpolation plot are depicted in 252 

Fig 6 and 7 respectively. The application of the Monmonier algorithm to the matrices of genetic 253 
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and geographic distances (Fig 6) indicated two barriers: the first between the two Atlantic 254 

samples and the remaining samples, the second between the Moroccan sample and the 255 

remaining samples. 256 

Looking at the interpolation plot (Fig 7), it can be noticed that the genetic diversity appears 257 

higher in the Western portion (Atlantic Ocean and Western Mediterranean) of the sampled area, 258 

and lower in the Eastern portion (Central-Eastern Mediterranean). The exact values (data not 259 

shown) along the X and Y axes for the highest peaks on the Z axis of the plot show that the 260 

highest genetic divergence is found along a line that separates the two Atlantic samples from all 261 

the others..Not surprisingly, this line corresponds mostly to the Iberian Peninsula, but also to 262 

the Strait of Gibraltar. Other high (but less pronounced) peaks were located along the 263 

separation between the Moroccan sample and the rest of the Mediterranean, corresponding to 264 

the Almeria-Oran front. 265 

Discussion 266 

This study highlights the patterns of molecular differentiation in Coris julis in the 267 

Mediterranean Sea and the Atlantic Ocean. 268 

A single haplotype (haplotype 2) was shared among all the Mediterranean sampling sites 269 

(except the Israeli one) and was represented in over half of the specimens. This haplotype was 270 

absent in Atlantic sampling sites. The next most common haplotype was represented in only 271 

4.5% of the specimens and there was a large proportion (75%) of rare haplotypes. The results 272 

of the analyses of population differentiation, on the whole, can be interpreted as an absence of 273 

genetic structuring within the Mediterranean Sea (with the exception of the Moroccan sample 274 

situated in the Alboran Sea) and a strong differentiation between Mediterranean Sea and 275 

Atlantic Ocean, with the Moroccan sample being intermediate. 276 

Looking at the results of the neutrality tests, it can be said that the Atlantic and Moroccan 277 

samples do not show signs of departure from neutrality expectations while the pooled 278 
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Mediterranean samples do. However, results of neutrality tests on the Atlantic and Moroccan 279 

samples should be considered cautiously as the low sample size of those samples might have 280 

lead, even with powerful tests as the ones used, to a lack of statistical power. As causes of 281 

departure from neutrality for the Mediterranean Sea sample we cannot dismiss background 282 

selection and genetic hitchhiking. However, an event of recent demographic and range 283 

expansion represents a likely hypothesis. Such a hypothesis would also be supported by Ray et 284 

al.’s (2003) suggestion that, in the presence of high exchange of migrants among neighbouring 285 

demes, a large spatial expansion can lead to signatures similar to those arising from a pure 286 

demographic expansion. Given that C. julis is regarded as thermophilic and it has been known 287 

to expand his geographical range in response to water warming during very recent historical 288 

times (Piron et al. 2007; Lipej et al. 2009),it is conceivable that this species could have also 289 

been subject to changes in its range as a consequence of strong changes in climate in more 290 

distant times. In particular, it can be hypothesised that due to the drop in water temperatures 291 

during the late Pleistocene Mediterranean populations were isolated at thermally favoured 292 

locations. A subsequent rise in temperature then caused a demographic and spatial expansion in 293 

the Mediterranean leading to the observed deviation from neutrality. Interestingly enough, 294 

Patarnello et al. (2007) found signatures of a population expansion in Mediterranean in 5 out of 295 

the 7 fish species for which they carried out separate analyses for Atlantic and Mediterranean 296 

samples; 4 out of the 5 species that showed signs of expansion also showed a significant Fu’s 297 

FS statistic. The relationships among haplotypes represented in the network, as well as in the 298 

Bayesian tree, showed two sub-networks separated by a long distance. One of the two sub-299 

networks comprised Mediterranean haplotypes and showed a “star-like” topology, the other 300 

essentially Atlantic haplotypes. Both the "star-like" genealogy and the excess of rare mutations 301 

(that can be found in the "Mediterranean" sub-network) have been considered to arise as a 302 

consequence of population growth (Slatkin and Hudson 1991; Harpending and Rogers 2000). A 303 

star-like genealogy is also expected in the case of a very rapid increase in population size 304 
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followed by a period of large and constant population size (Slatkin and Hudson 1991). Such a 305 

population growth is supported by the above-mentioned results of the neutrality tests. 306 

Moreover, the “intermediate” position of the Moroccan sample, with haplotypes belonging to 307 

both the Atlantic and the Mediterranean sub-networks, mirrors the results of analyses of genetic 308 

differentiation. 309 

The results of the Mantel tests show a significant correlation between genetic and geographic 310 

distance among sampling sites. The spatial autocorrelation analysis shows, in general terms, 311 

that at longer distances (starting at about 1000 Km) the genetic distance among sites is larger 312 

than expected by chance alone. The pattern revealed by the plot of pairwise genetic versus 313 

geographic distance (Fig 5) suggests that the significant correlation between genetic and 314 

geographic distance found by the Mantel test might be the product of the particular sampling 315 

scheme used in this study. In fact, the discontinuity among groups of distances observed in the 316 

plot, can be interpreted (Guillot et al. 2009) as the effect of the presence of barriers to gene 317 

flow, thus dismissing the hypothesis of an isolation by distance model as a cause of genetic 318 

differentiation among Atlantic, Moroccan and Mediterranean samples. 319 

Overall, the plot of genetic versus geographic distance, the computation of barriers with the 320 

Monmonier algorithm and the landscape shape interpolation plot, , all confirm the results of the 321 

analyses of genetic differentiation and show a separation of the Atlantic samples and to a lower 322 

extent also of the Moroccan sample. The general result of an overall Atlantic-Mediterranean 323 

differentiation confirms previous findings based on a very limited sampling of Mediterranean 324 

sites and a different set of genetic markers (Guillemaud et al. 2000; Aurelle et al. 2003). 325 

However, the concurrent presence of Atlantic and Mediterranean haplotypes in the Alboran Sea 326 

is a new finding for the species. Interestingly, most of the species with Atlantic-Mediterranean 327 

differentiation show steep changes of allele frequencies associated either with the Almeria-328 

Oran front or with the Strait of Gibraltar (Patarnello et al. 2007). In the case of C. julis, the 329 

intermediate situation of the Moroccan sample could be explained by the presence of both the 330 
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Strait of Gibraltar and the currents within the Alboran Sea which create the Almeria-Oran 331 

Front. The Alboran Sea might then be partially genetically isolated both from the Atlantic 332 

Ocean and the rest of the Mediterranean Sea, with marked genetic differentiation between the 333 

two basins and a limited, possibly current, gene flow between the two via the Alboran Sea. In 334 

this respect, the Alboran Sea might, therefore, represent a still partially isolated zone of 335 

secondary contact between two previously separate C. julis lineages. Interestingly enough, 336 

Laurent and Lejeune (1988) have noticed in the Alboran Sea and in French Mediterranean 337 

waters the presence of secondary rainbow wrasse individuals exhibiting the "Atlantic" 338 

secondary colour pattern. In this context it is also worth noting that Lemaire et al. (2005) have 339 

found intermediate frequencies of Atlantic and Mediterranean haplotypes of the sea bass 340 

(Dicentrarchus labrax) in Alboran Sea samples, thus hypothesising that the Almeria-Oran front 341 

had been crossed by Mediterranean migrants. The northern African coast has been widely 342 

neglected in studies on phylogeography in the Mediterranean. While this study represents an 343 

exception it will be important to sample more localities to confirm that Atlantic haplotypes are 344 

gradually replaced by Mediterranean haplotypes as the distance from Gibraltar or the 345 

Almeria/Oran fronts increases. Moreover, our results highlight the importance of samples from 346 

the Alboran Sea in phylogeographic studies in fish because intermediate frequencies of 347 

Mediterranean and Atlantic haplotypes in the Alboran Sea might be more common than 348 

expected.  349 

Within the rest of the Mediterranean, the present study reports no significant differentiation 350 

among samples or areas. This is in contrast with previous findings on Thalassoma pavo, 351 

another labrid species with similar biological features. Here, no differentiation between 352 

Atlantic and Mediterranean samples was detected but a weak differentiation was found between 353 

western and eastern Mediterranean in terms of a genetic discontinuity at the Peloponnesus 354 

(Costagliola et al. 2004; Domingues et al. 2008). 355 
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Regarding the differentiation within the Atlantic, Aurelle et al. (2003) reported for C. julis no 356 

genetic differentiation between samples from the Azores Islands and most of the Atlantic 357 

continental samples, despite a distance of more than 1,800 km between the archipelago and the 358 

continent. The absence of genetic differentiation noticed by Aurelle et al. (2003) within the 359 

Atlantic and the absence of genetic differentiation within the Mediterranean noticed in the 360 

present study can be explained by the high dispersal potential of the species during the 361 

planktonic larval phase. In fact, given the length of the larval phase, it is quite possible that 362 

certain sampling localities of the present study exchange migrants directly at each generation. 363 

For example, on the basis of previous data on water currents in the Adriatic Sea (Poulain 2001) 364 

and on larval phase duration (Gordoa et al. 2000; Raventòs and Macpherson 2001), and 365 

assuming conservatively a water velocity of 5 cm s
-1

 and a larval phase duration of 21 days, 366 

larvae could travel as far as 864 Km, which is considerably more than the approximate distance 367 

between the Split and Lecce (Porto Cesareo) samples (about 540 Km). While this computation 368 

constitutes an oversimplification that does not take into account larval retention, pelagic egg 369 

phase, larval mobility and presence of unsampled localities, it still points out that there is a high 370 

potential of within-basin migrant exchange of larvae. The results of the present study disagree 371 

with the supposition by Aurelle et al. (2003) that genetic differentiation in the Mediterranean 372 

Sea might have been more pronounced than within the Atlantic Ocean, while still confirming 373 

the authors' finding of an Atlantic-Mediterranean differentiation. However, despite a larger 374 

sample size in our study compared to Aurelle et al (2003), the confirmation of the unexpected 375 

absence of a genetic structure among Mediterranean samples through the present study might 376 

still be limited by the sometimes lower resolution of population structure found in our marker 377 

type used (e.g. Shaw et al 1999). Nevertheless, many studies indicate the opposite; with a more 378 

pronounced population structure being detected in mitochondrial DNA opposed to 379 

microsatellites (Hoarau et al. 2003, see also Hefti-Gautschi et al. 2009 and references therein). 380 

Discrepancies between mitochondrial and nuclear markers have also been found to arise as a 381 
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consequence of a number of factors such as different mutation rates or effective population 382 

sizes and, while usually regarded as neutral, they can both behave as non-neutral (Ballard and 383 

Whitlock 2004; Nielsen et al. 2006; Larsson et al. 2007; Zink and Barrowclough 2008; Galtier 384 

et al. 2009). 385 

Furthermore, the present study suggests that the species might have undergone a recent 386 

population expansion within the Mediterranean, and not in the Atlantic. Accordingly, while the 387 

lack of a recent population expansion in the Atlantic should be confirmed by studies on 388 

mitochondrial control region employing a better sampling of Atlantic locations, this study 389 

supports the hypothesis that a population expansion has taken place after a contraction phase 390 

when parts of the Mediterranean area constituted warmer refugia isolated from the Atlantic. 391 

This would oppose the hypothesis proposed by Aurelle et al. (2003) that about 1–2 million 392 

years ago, C. julis colonized the temperate north-eastern Atlantic from the Mediterranean Sea 393 

via the Strait of Gibraltar.  394 
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Figure legends 551 

Fig 1 Map of sampling sites. Abbreviations used are as in Tab I. 552 

 553 

Fig 2 Plot of the first two dimensions obtained from nonparametric multidimensional scaling of 554 

pairwise Fst among both Mediterranean and Atlantic sampling sites. 555 

 556 

Fig 3 Plot of the first two dimensions obtained from nonparametric multidimensional scaling of 557 

pairwise Fst among Mediterranean sampling sites (excluding the sample from Morocco). 558 

  559 

Fig 4 Neighbor-net network depicting the relationships among haplotypes. The “Atlantic” 560 

(dashed line) and “Mediterranean” sub-networks have been disconnected due to the excessive 561 

length of the branch between them. The “Atlantic” sub-network comprises only haplotypes 562 

from the Atlantic Ocean and Morocco, the “Mediterranean” sub-network only haplotypes from 563 

Mediterranean. 564 

 565 

Fig 5 Plot of pairwise genetic distances versus pairwise geographic (shortest waterway, in 566 

kilometers) distances. The dashed ellipses highlight comparisons involving Atlantic (A) and 567 

Moroccan (B) samples, their intersection (C) the comparisons between the Moroccan and the 568 

two Atlantic samples. 569 

 570 

Fig 6 Barriers to gene flow suggested by the Monmier algorithm. The left side of the map 571 

corresponds to the eastern side of geographic space. The barrier labelled with “a”, which 572 

separates the two most eastern sampling sites (Atlantic sites) from the others,was found when 573 

computing both one and two barriers. 574 

 575 
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Fig 7 Landscape shape interpolation of genetic distances in geographic space. The position of 576 

sampling locations in the “base” of the graph are approximate. 577 



Table 1: Sampling locations and years. 

Sampling site Abbreviation n Coordinates Year of sampling 
Shahaf Island, Israel IS 2 33°04'N 35°05'E 2004 

Gavdos, Greece GA 14 34°49'N 24°06'E 2001 
Chania, Crete Island, Greece CR 2 35°30'N 23°59'E 2001 
Porto Cesareo-Lecce, Italy LE 24 40°14'N 17°52'E 2007 and 2009 

Split, Croatia SP 26 43°28'N 16°24'E 2007 
Augusta, Sicily, Italy AU 23 37°11'N 15°14'E 2007 
Riposto, Sicily, Italy RI 24 37°43'N 15°13'E 2007 

Valun, Cres Island, Croatia CI 12 44°54'N 14°21'E 1999 
Naples, Italy NA 25 40°46'N 14°12'E 2007 

Rovinj, Croatia RO 6 45°04'N 13°37'E 1999 
Mazara del Vallo, Sicily, Italy MA 25 37°38'N 12°35'E 2007 

Pantelleria, Italy PN 12 36°50'N 11°59'E 2008 
Calvi, Corsica, France CA 22 42°34'N 08°43'E 1996 and 1998 

Oristano, Sardinia, Italy OR 23 39°48'N 8°31'E 2007 
Tossa de Mar, Spain TM 8 41°43'N 02°56'E 1999 

Mallorca, Spain ML 33 39°31'N 2°39'E 2000 and 2007 
Cantabrian Sea, Spain CS 4 43°28'N 03°41'W 1999 
Al Hoceima, Morocco MO 15 35°14'N 03°59'W 2001 

Portugal PT 9 37°04'N 08°17'W 1999 
 



Table 2: AMOVA grouping schemes and results. In the grouping scheme, letters represent a certain 
schemes, roman numbers represent the group to which sequences of a certain sampling site were 
assigned. The schemes are as follows: A= Mediterranean (I) vs Atlantic (II), B=Atlantic + Morocco 
(II) vs Mediterranean (I), C=Eastern Mediterranean (III) vs Central Mediterranean (I) vs Western 
Mediterranean (II), D=Eastern Mediterranean (II) vs the remaining Mediterranean samples except 
Morocco (I) 

Grouping schemes 
Sampling site Abbreviation A B C D 

Shahaf Island, Israel IS I I III II 
Gavdos, Greece GA I I III II 

Chania, Crete Island, Greece CR I I III II 
Porto Cesareo-Lecce, Italy LE I I I I 

Split, Croatia SP I I I I 
Augusta, Sicily, Italy AU I I I I 
Riposto, Sicily, Italy RI I I I I 

Valun, Cres Island, Croatia CI I I I I 
Naples, Italy NA I I II I 

Rovinj, Croatia RO I I I I 
Mazara del Vallo, Sicily, Italy MA I I II I 

Pantelleria, Italy PN I I II I 
Calvi, Corsica, France CA I I II I 

Oristano, Sardinia, Italy OR I I II I 
Tossa de Mar, Spain TM I I II I 

Mallorca, Spain ML I I II I 
Cantabrian Sea, Spain CS II II - - 
Al Hoceima, Morocco MO I II II - 

Portugal PT II II - - 

Results 

 Fixation indices Percent variance explained Significance levels 

Grouping 
scheme 

Fsc Fst Fct Among 
groups 

Among populations 
within groups 

Within 
populations 

Fsc Fst Fct 

A 0.114 0.955 0.949 94.9 0.58 4.52 <0.001 <0.001 <0.01 

B 0.364 0.893 0.832 83.16 6.14 10.7 <0.001 <0.001 <0.01 

C 0.125 0.105 -0.02 -2.34 12.85 89.49 <0.001 <0.01 >0.05 

D 0.007 0.014 0.007 0.77 0.68 98.55 >0.05 >0.05 <0.05 

 
 



Pairwise Comparison

Gavdos Lecce Split Augusta Riposto
Cres 

Island
Naples Rovinj

Mazara 
del Vallo

Pantelleria Calvi Oristano
Tossa 

de Mar
Mallorca

Cantabrian 
Sea

Morocco Portugal

Gavdos - 0,424 0,071 0,07 0,216 0,525 0,1 0,762 0,347 0,286 0,135 0,496 0,305 0,173 <0.001 0,092 <0.001

Lecce 0,000 - 0,11 0,644 0,71 0,612 0,431 0,114 0,613 0,349 0,491 0,592 0,792 0,105 <0.001 0,016 <0.001

Split 0,028 0,011 - 0,041 0,427 0,376 0,052 0,462 0,186 0,286 0,238 0,428 0,513 0,134 <0.001 0,015 <0.001

Augusta 0,029 -0,005 0,018 - 0,403 0,247 0,204 0,144 0,215 0,023 0,722 0,578 0,543 0,358 <0.001 0,007 <0.001

Riposto 0,013 -0,005 0,001 0,001 - 0,609 0,726 0,197 0,842 0,568 0,792 0,958 0,674 0,866 <0.001 0,009 <0.001

Cres Island -0,008 -0,007 0,003 0,011 -0,008 - 0,594 0,326 0,408 0,629 0,637 0,611 0,481 0,434 <0.001 0,117 <0.001

Naples 0,029 0,001 0,021 0,012 -0,008 -0,009 - 0,077 0,829 0,247 0,634 0,807 0,487 0,195 <0.001 0,009 <0.001

Rovinj -0,053 0,039 0,001 0,059 0,028 0,011 0,074 - 0,145 0,591 0,134 0,359 0,074 0,298 0,003 0,272 <0.001

Mazara del Vallo 0,004 -0,005 0,010 0,009 -0,012 0,002 -0,013 0,065 - 0,09 0,617 0,887 0,419 0,394 <0.001 0,008 <0.001

Pantelleria 0,012 0,004 0,011 0,042 -0,006 -0,013 0,009 -0,021 0,030 - 0,054 0,473 0,324 0,202 <0.001 0,111 <0.001

Calvi 0,024 0,000 0,010 -0,012 -0,011 -0,012 -0,010 0,079 -0,008 0,035 - 0,812 0,346 0,374 <0.001 0,014 <0.001

Oristano -0,001 -0,004 0,002 -0,008 -0,018 -0,008 -0,013 0,007 -0,017 -0,003 -0,014 - 0,71 0,599 <0.001 0,014 <0.001

Tossa de Mar 0,019 -0,015 -0,007 -0,014 -0,009 -0,001 -0,004 0,076 -0,001 0,010 -0,001 -0,020 - 0,368 0,001 0,183 <0.001

Mallorca 0,017 0,013 0,012 0,003 -0,014 0,001 0,007 0,015 0,002 0,018 0,002 -0,005 0,003 - <0.001 0,003 <0.001

Cantabrian Sea 0,971 0,973 0,977 0,977 0,975 0,972 0,976 0,979 0,982 0,962 0,983 0,971 0,985 0,972 - 0,005 0,523

Morocco 0,173 0,247 0,263 0,251 0,249 0,163 0,261 0,084 0,267 0,160 0,250 0,239 0,131 0,291 0,577 - <0.001

Portugal 0,978 0,977 0,980 0,981 0,979 0,979 0,980 0,987 0,985 0,971 0,986 0,975 0,990 0,976 0,067 0,655 -

Table 3: Pairwise comparisons among sampling sites. Below diagonal Fst values, above diagonal p-values.
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Table 4: Test values and significance levels of the neutrality tests 

performed. 

Group of samples 

Ramos-Onsins & Rozas R2 

Statistic p-value 

Mediterranean 0.0176 <0.001 

Mediterranean minus Morocco 0.012 <0.001 

Atlantic 0.1804 0.506 

All sequences 0.0409 0.04 

 



Table 5: Relative frequencies of each haplotype within each population and in the complete dataset. Shared haplotypes in boldface. 

Haplotype Israel Gavdos Crete Lecce Split Augusta Riposto Cres 
Island Naples Rovinj 

Mazara 
del 

Vallo 
Pantelleria Calvi Oristano 

Tossa 
de 

Mar 
Mallorca Cantabrian 

Sea Morocco Portugal Total 

Hap1 - - - - - 0.044 0.042 - - - - - - - - 0.091 - - - 0.016 
Hap2 - 0.500 0.500 0.375 0.538 0.609 0.542 0.333 0.600 0.500 0.720 0.500 0.773 0.522 0.625 0.545 - 0.600 - 0.534 
Hap3 - - - - - 0.044 - - - - - - - - - - - - - 0.003 
Hap4 - - - - - 0.044 - - - - - - - - - - - - - 0.003 
Hap5 - - - - - 0.044 - - 0.040 - - - 0.046 0.044 - - - - - 0.013 
Hap6 - - - 0.042 - 0.044 - - - - - - - 0.044 - - - - - 0.010 
Hap7 - - - - - 0.044 - - - - - - - - - - - - - 0.003 
Hap8 - - - - - 0.044 - - - - - - - - - - - - - 0.003 
Hap9 - - - - - 0.044 - - - - - - 0.046 - - - - - - 0.006 
Hap10 - - - 0.042 - 0.044 - - - - - - - - - - - - - 0.006 
Hap11 0.500 - - - - - - - - - - - - - - - - - - 0.003 
Hap12 0.500 - - - 0.039 - - - - - - - - - 0.125 - - - - 0.010 
Hap13 - 0.071 - 0.083 0.039 - 0.042 0.083 0.120 - 0.040 - - 0.044 - 0.030 - - - 0.039 
Hap14 - - - 0.042 0.039 - 0.042 0.083 - - - - - - - - - - - 0.013 
Hap15 - - - 0.083 - - - - - - - - - - - - - - - 0.006 
Hap16 - - - 0.042 - - - - - - - - - - - - - - - 0.003 
Hap17 - - - 0.042 - - - - - - - - - - - - - - - 0.003 
Hap18 - - - 0.042 - - - - - - - - - - - - - - - 0.003 
Hap19 - - - 0.042 - - - - - - - - - - - - - - - 0.003 
Hap20 - - - 0.042 - - - - - - - - - - - - - - - 0.003 
Hap21 - - - 0.042 - - - - - - - - - - - - - - - 0.003 
Hap22 - 0.071 - 0.042 - - - - - - 0.040 - - - - - - - - 0.010 
Hap23 - - - 0.042 0.039 - - - - - - - - - - 0.030 - - - 0.010 
Hap24 - - - - 0.039 - 0.042 - - 0.333 - 0.083 - - - 0.061 - 0.067 - 0.026 
Hap25 - - - - - - 0.042 - - - - - - - - 0.030 - - - 0.006 
Hap26 - - - - - - - - - - - - - - - 0.030 - - - 0.003 
Hap27 - - - - - - - - - - - - - - - 0.030 - - - 0.003 
Hap28 - - - - - - - - - - - - - - - 0.030 - - - 0.003 
Hap29 - - - - - - - - - - - - - - - 0.030 - - - 0.003 
Hap30 - - - - - - - - - - - - - - - 0.030 - - - 0.003 
Hap31 - - - - - - - - - - - 0.083 - - - 0.030 - - - 0.006 
Hap32 - - - - - - - - - - - - 0.046 - - 0.030 - - - 0.006 
Hap33 - - - - - - - - - - 0.040 - - - - - - - - 0.003 
Hap34 - - - - 0.039 - - 0.083 0.040 - 0.040 - - 0.044 - - - - - 0.016 
Hap35 - - - - - - - - - - 0.040 - - - - - - - - 0.003 
Hap36 - - - - - - - - - - 0.040 - - - - - - - - 0.003 
Hap37 - - - - - - - - - - 0.040 - - - - - - - - 0.003 
Hap38 - - - - - - - - 0.040 - - - - - - - - - - 0.003 
Hap39 - - - - - - - 0.083 0.040 - - - - - - - - - - 0.006 
Hap40 - - - - - - - - 0.040 - - - - - - - - - - 0.003 
Hap41 - - - - - - - - 0.040 - - - - - - - - - - 0.003 
Hap42 - - - - - - - - 0.040 - - - - - - - - - - 0.003 
Hap43 - - - - - - - 0.167 - - - - - 0.044 - - - 0.067 - 0.013 
Hap44 - - - - - - - - - - - - - 0.044 - - - - - 0.003 
Hap45 - - - - - - - - - - - - - 0.044 - - - - - 0.003 
Hap46 - - - - - - - - - - - - - 0.044 - - - - - 0.003 
Hap47 - - - - - - - - - - - - - 0.044 - - - - - 0.003 
Hap48 - - - - - - - - - - - - - 0.044 - - - - - 0.003 
Hap49 - - - - - - - - - - - - - 0.044 - - - - - 0.003 
Hap50 - - - - - - - - - - - 0.083 - - - - - - - 0.003 
Hap51 - - - - - - - - - - - 0.083 - - - - - - - 0.003 
Hap52 - - - - - - - - - - - 0.083 - - - - - - - 0.003 



Hap53 - - - - - - - - - - - 0.083 - - - - - - - 0.003 
Hap54 - - - - - - 0.042 - - - - - - - - - - - - 0.003 
Hap55 - - - - - - 0.042 - - - - - - - - - - - - 0.003 
Hap56 - - - - - - 0.042 - - - - - - - - - - - - 0.003 
Hap57 - - - - - - 0.042 - - - - - - - - - - - - 0.003 
Hap58 - - - - - - 0.042 - - - - - - - - - - - - 0.003 
Hap59 - - - - - - 0.042 - - - - - - - - - - - - 0.003 
Hap60 - - - - 0.039 - - - - - - - - - - - - - - 0.003 
Hap61 - - - - 0.039 - - - - - - - - - - - - - - 0.003 
Hap62 - - - - 0.039 - - - - - - - - - - - - - - 0.003 
Hap63 - - - - 0.039 - - - - - - - - - - - - - - 0.003 
Hap64 - - - - 0.039 - - - - - - - - - - - - - - 0.003 
Hap65 - - - - 0.039 - - - - - - - - - - - - - - 0.003 
Hap66 - - - - - - - - - - - - 0.046 - - - - - - 0.003 
Hap67 - - - - - - - - - - - - 0.046 - - - - - - 0.003 
Hap68 - - - - - - - - - - - - - - - - 0.750 0.200 0.889 0.045 
Hap69 - - - - - - - - - - - - - - - - 0.250 - - 0.003 
Hap70 - - - - - - - 0.083 - - - - - - - - - - - 0.003 
Hap71 - - - - - - - 0.083 - - - - - - - - - - - 0.003 
Hap72 - - - - - - - - - - - - - - - - - - 0.111 0.003 
Hap73 - 0.143 - - - - - - - 0.167 - - - - - - - - - 0.010 
Hap74 - - - - - - - - - - - - - - 0.125 - - - - 0.003 
Hap75 - - - - - - - - - - - - - - 0.125 - - - - 0.003 
Hap76 - - - - - - - - - - - - - - - - - 0.067 - 0.003 
Hap77 - 0.071 - - - - - - - - - - - - - - - - - 0.003 
Hap78 - 0.071 - - - - - - - - - - - - - - - - - 0.003 
Hap79 - 0.071 - - - - - - - - - - - - - - - - - 0.003 
Hap80 - - 0.500 - - - - - - - - - - - - - - - - 0.003 
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